# Autotelic Computing

## Thursday, September 5, 2013

### Siamese Dream

A magic square of odd order can be efficiently constructed with a simple method brought from the travels of the French mathematician Simon de la LoubĂ¨re to what was then Thailand (Siam), in the 17th century. I like to think of a time when you brought things like that from overseas trips, and not only a gazillion photos and some cheap souvenirs.

The method is easier to undertand with a visual example:

A Python implementation is also very easy, especially when using Numpy, with which the pos pointer variable, being a numpy.array, can be both updated with one-liner arithmetic operators, and used as a two-dimensional index into the matrix (when cast as a tuple):


import numpy as np

def de_la_loubere(n):
m = np.zeros((n, n), dtype=int)
pos = np.asarray([0, n/2]) # initial
m[tuple(pos)] = 1
i = 2
while i <= n ** 2:
if m[tuple((pos + [-1, 1]) % n)] != 0:
pos += [1, 0]  # blocked: go down
else:
pos += [-1, 1] # go up/right
pos %= n # wrap
m[tuple(pos)] = i
i += 1
return m

n = 15

m = de_la_loubere(n)

# verify that it's really magic
magic = n * (n ** 2 + 1) / 2 # 65
assert (np.sum(m, axis=0) == np.repeat(magic, n)).all()
assert (np.sum(m, axis=1) == np.repeat(magic, n)).all()
assert m.trace() == magic
assert np.fliplr(m).trace() == magic

print m

# [[122 139 156 173 190 207 224   1  18  35  52  69  86 103 120]
#  [138 155 172 189 206 223  15  17  34  51  68  85 102 119 121]
#  [154 171 188 205 222  14  16  33  50  67  84 101 118 135 137]
#  [170 187 204 221  13  30  32  49  66  83 100 117 134 136 153]
#  [186 203 220  12  29  31  48  65  82  99 116 133 150 152 169]
#  [202 219  11  28  45  47  64  81  98 115 132 149 151 168 185]
#  [218  10  27  44  46  63  80  97 114 131 148 165 167 184 201]
#  [  9  26  43  60  62  79  96 113 130 147 164 166 183 200 217]
#  [ 25  42  59  61  78  95 112 129 146 163 180 182 199 216   8]
#  [ 41  58  75  77  94 111 128 145 162 179 181 198 215   7  24]
#  [ 57  74  76  93 110 127 144 161 178 195 197 214   6  23  40]
#  [ 73  90  92 109 126 143 160 177 194 196 213   5  22  39  56]
#  [ 89  91 108 125 142 159 176 193 210 212   4  21  38  55  72]
#  [105 107 124 141 158 175 192 209 211   3  20  37  54  71  88]
#  [106 123 140 157 174 191 208 225   2  19  36  53  70  87 104]]